

## "Independence through Projects"





## **Objectives**

- 1. Identify resources to share with 4-H Club members.
- Describe key components of the Science, Engineering, & Technology (SET) National 4-H Mission Mandate.
- 3. Identify age-appropriate activities related to SET.
- 4. Define additional terms related to SET.
- 5. Explore the Experiential Learning Model



## **Objective 1**

Identify resources to share with 4-H Club members.





- 2a: Bike Safety and Rules 4-H Bicycle Project (Level 1)
  - Learn appropriate hand signals to use when bicycling
  - Learn other bicycle safety rules
- 2b: Make Your Own Play Dough 4-H Child Development Project (Level B)
  - Use play dough to help young children develop eye/hand coordination
  - Observe children's reactions when they play.
  - Use homemade play dough recipe





- 2c: Foam Test 4-H Consumer Clothing (Intermediate)
  - Identify active ingredients in shampoos and toothpastes
  - Identify most economical products
- 2d: Dots Before My Eyes 4-H Entomology (Level
   2)
  - Learn how insects use bright colors and camouflage to survive



- **2e: Make a Volcano** 4-H Geology (Level 1)
  - Learn how volcanoes erupt and form rocks
  - Create a mini volcanic eruption
- 2f: How to Build a Rain Gauge 4-H Weather (Level 1)
  - Identify parts of weather
  - Describe the importance of water
  - Learn how to measure rain
  - Learn how to build a basic rain gauge



- 2g: Texture Feely Bags 4-H Soil & Water Conservation (Level A)
  - Identify products by touch
  - Identify texture of the three basic soil types
- 2h: My Personality 4-H Personality (Level A)
  - Identify characteristics that make personality special and unique
  - Identify responsibilities at home and in the community
  - Learn to complete a basic personality project poster



## **Objective 2**

Describe key components of the Science, Engineering, & Technology (SET) National 4-H Mission Mandate.







One Million New Scientists. One Million New Ideas.™





## **Components of SET**

- 4-H is directly connected to land grant research.
- 5% of U.S. graduates are in SET compared to 66% in Japan and 59% in China.
- 4-H has engaged youth in SET areas for over 100 years.





## **Components of SET**

- 4-H SET reaches over 5 million youth with hands-on learning.
- Youth are supported by over 500,000 dedicated adult volunteers.
- 4-H SET is part of long-term solution to improve the science literacy and aptitude of America's youth.





## **Components of SET**

- Goal: prepare 1 million new youth to excel in SET by 2013.
- Encouraging this passion in science today will lead members to sciencerelated education and career decisions tomorrow.



## **Objective 3**

Identify age-appropriate activities related to SET.





#### **Grades K-4**

- Ask a question about objects, organisms, and events in the environment.
- Plan and conduct a simple investigation.
- Use data to construct a reasonable explanation.





#### **Grades 5-8**

- Identify questions that can be answered through scientific investigation.
- Design and conduct a scientific investigation.
- Think critically and logically to find the relationships between evidence and explanations.



#### Grades 9-12

- Identify questions or concepts that can be answered through scientific investigation.
- Design and conduct scientific investigations.
- Formulate and revise scientific explanations and models using logic and evidence.



## **Objective 4**

Define additional terms related to SET.





#### SET

Science, Engineering, and Technology
(National 4-H Council)





#### **STEM**

Science, Technology, Engineering, and Mathematics

(National Science Foundation and National Science Teachers Association)



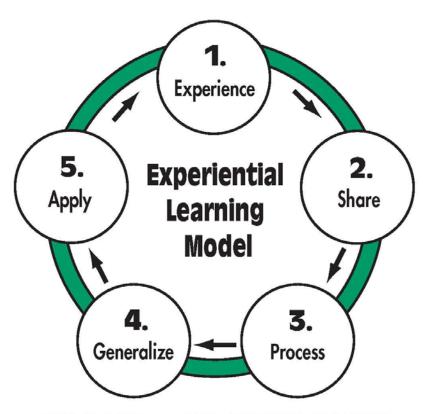


#### **STEAM**

Science, Technology, Engineering,
Agriculture, and Mathematics
(Department of Youth Development and
Agricultural Education, Purdue University)






## **Objective 5**

Explore the Experiential Learning Model.





## **Experiential Learning Model**



Pfeiffer, J.W., & Jones, J.E., "Reference Guide to Handbooks and Annuals"

© 1983 John Wiley & Sons, Inc.

Reprinted with permission of John Wiley & Sons, Inc.





- 1. Experience the activity. Characteristics include:
  - Provide a concrete experience.
  - Complete the activity individually or as a group.
  - Accept that the activity may be unfamiliar and uncomfortable to learner.
  - Push learning beyond previous performance levels.
  - Accept the risk of failure.



- 2. Share reactions and observations.
  - Get participants to talk about the experience.
  - Share reactions and observations.
  - Discuss feelings generated by the experience.
  - Let the group (or individual) talk freely and acknowledge ideas generated.





- 3. Process by analyzing and reflecting upon experience.
  - How was experience completed?
  - How did themes, problems, and issues emerge?
  - How were specific problems or issues addressed?
  - What were the members' experiences?
  - Were there recurring themes?

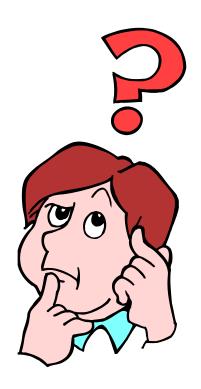




- 4. Generalize what was learned and connect it to real life.
  - Find general trends or common truths in the experience.
  - Identify "real life" principles that surfaced.
  - Identify key items that were learned.
  - List key terms that capture the learning.



- 5. Apply what was learned to other situations.
  - How can new learning can be applied to other situations?
  - What issues raised can be useful in the future?
  - How can more effective behaviors be developed from new learning?
  - How can each individual feel a sense of ownership for what is learned?




### **Group Discussion**

- Why is it important to provide 4-H members with opportunities to expand their abilities in SET?
- How can we incorporate SET into existing 4-H programs and activities?
- How do we currently include components of the Experiential Learning Model in the 4-H experience?
- How could we enhance experiential learning in the future?



#### **Conclusion & Quiz**





#### Sources

 Carrell, Tony. (2008). Experiential Learning Model. Presented at 4-H Youth Development Master Volunteer Training. West Lafayette, IN.

National 4-H Council. Mission Mandates.
 Retrieved December 12, 2008, from <a href="http://www.fourhcouncil.edu/missionmandates.">http://www.fourhcouncil.edu/missionmandates.</a>
 s.aspx



#### Sources

- Pfeiffer, J.W., & Jones, J.E. (1983).
   Reference Guide to Handbooks and Annuals.
   John Wiley & Sons, Inc.
- Silliman, B. (2007). Critical Indicators of Youth Development Outcomes for 4-H National Mission Mandates. North Carolina State University.